Global coefficient ring in the Nilpotence Conjecture
نویسندگان
چکیده
منابع مشابه
Global Coefficient Ring in the Nilpotence Conjecture
In this note we show that the nilpotence conjecture for toric varieties is true over any regular coefficient ring containing Q. In [G] we showed that for any additive submonoid M of a rational vector space with the trivial group of units and a field k with chark = 0 the multiplicative monoid N acts nilpotently on the quotient Ki(k[M ])/Ki(k) of the ith K-groups, i ≥ 0. In other words, for any s...
متن کاملThe Coefficient Field in the Nilpotence Conjecture for Toric Varieties
The main result of the work “The nilpotence conjecture in K-theory of toric varieties” is extended to all coefficient fields of characteristic 0, thus covering the class of genuine toric varieties. 1. The statement Let R be a (commutative) regular ring, M be arbitrary commutative, cancellative, torsion free monoid without nontrivial units, and i be a nonnegative integral number. The nilpotence ...
متن کاملThe Nilpotence Conjecture in K-theory of Toric Varieties
It is shown that all nontrivial elements in higher K-groups of toric varieties over a class of regular rings are annihilated by iterations of the natural Frobenius type endomorphisms. This is a higher analog of the triviality of vector bundles on affine toric varieties. 1. Statement of the main result The nilpotence conjecture in K-theory of toric varieties, treated in our previous works, asser...
متن کاملThe Steinberg Group of a Monoid Ring, Nilpotence, and Algorithms
For a regular ring R and an affine monoid M the homotheties of M act nilpotently on the Milnor unstable groups of R[M ]. This strengthens the K2 part of the main result of [G5] in two ways: the coefficient field of characteristic 0 is extended to any regular ring and the stableK2-group is substituted by the unstable ones. The proof is based on a polyhedral/combinatorial techniques, computations...
متن کاملThe Hochschild Cohomology Ring modulo Nilpotence of a Monomial Algebra
For a finite dimensional monomial algebra Λ over a field K we show that the Hochschild cohomology ring of Λ modulo the ideal generated by homogeneous nilpotent elements is a commutative finitely generated Kalgebra of Krull dimension at most one. This was conjectured to be true for any finite dimensional algebra over a field in [13].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2007
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-07-09106-x